A core aspect of data science is that decisions are made based on data, not (a-priori) beliefs. We ship changes to products or algorithms because they outperform the status quo in experiments. This has made experimentation rather popular across data driven companies.
The experiments most companies run today are based on classical statistical techniques, in particular null hypothesis statistical testing. There, the focus is on analyzing a single experiment that is sufficiently powered. However, these techniques ignore one crucial aspect that is prevalent in many contemporary settings: we have many experiments to run and this introduces an opportunity cost: every time we assign an observation to one experiment, we lose the opportunity to assign it to another.
Read more: https://multithreaded.stitchfix.com/blog/2020/07/07/large-scale-experimentation/
