In the past, AI/ML research engineers led the development of AI features. Their efforts were largely focused on offline testing: building and refining training data, engineering specific features, and tuning hyperparameters to optimize metrics like precision and recall. This process took months and was often completed without direct user feedback.
Today, we live in a world where new, pre-trained foundation models come out each week, and AI features can be built by any engineer. In this rapidly changing environment, speed is far more important than precision. The companies that will win this wave of AI development will embrace a new paradigm of testing—one focused on quickly launching features, rapidly testing new combinations of models, prompts, and parameters, and continuously leveraging user interactions to improve performance.